
CASE STUDY:
myFlix
Kelsey Flynn
February 2021

REACT

REDUX

< / >

TABLE OF CONTENTS

7-10

5

1-2

4

3

Project Overview
& Sneak Peek

Technical Objectives

Personal Project Goals

Step by Step

Timeline

11 Looking Back

6 Server-side Recap

PROJECT
OVERVIEW
myFlix is an movie database website, open for
new users to view a collection of movies, and
build up their profiles by adding their favorites.

myFlix’s client-side application was created with
React and Redux, and styled with React
Bootstrap. It is connected to my existing
server-side code (REST API and NoSQL
database), which is stored on the cloud-based
MongoDB Atlas.

myFlix is a MERN tech stack application, and the
final product is hosted on Netlify.

Responsive Navigation

Movies Collection

Expandable Details

1

SNEAK PEEK

2

PERSONAL PROJECT GOALS

I asked the key
question “Would I
actually use this
website?” when

developing myFlix.
While I kept the code
as clear and concise

as possible, I also
focused on having a

modern and functional
application.

This meant that I spent
extra time solidifying the
concepts of each stage

(React, Redux, Bootstrap,
etc). As I worked on this
application solo, I used

example repositories and
video tutorials to be

confident in my ability to
explain what I’d steps I’d

taken.

One of my goals
was to have this
project meet the
specifications of

the assigned task,
and also be
something I

personally wanted
to showcase on my

portfolio.

USER EXPERIENCECONCEPTUAL KNOWLEDGEPORTFOLIO READY

3

TECHNICAL OBJECTIVES

Connected API endpoints
made in server-side code to

the client-side views.
Endpoints included:

● Return all movies
(& movie filtering)

● Return single movie
● Return genre &

director info
● Create new user
● Login existing user

myFlix required React
Bootstrap for styling, and

needed additional UI
features such as filtering of

movie titles, which was
done with Redux.

Learned and developed first
React application with best
practices in mind. Utilization
of both class and functional
components, included state

routing SPA endpoints.

SERVER & CLIENT-SIDE
CONNECTIONS

RESPONSIVE UISINGLE PAGE REACT APP
(SPA)

4

TIMELINE

Component creation,
SPA routing

JANUARY 20 - 25

JANUARY 26 - FEBRUARY 2

FEBRUARY 3 - 8

FEBRUARY 9 - 14

Bootstrap styling/UI

Redux implementation, final
edits

React foundations

PROJECT
BRIEF

DEPLOYMENT

5

Server-side Recap

NoSQL collections for movies and users were
created in a previous project, and hosted on
MongoDB Atlas.

As a NoSQL database,
Mongoose schemas were
used to enforce uniformity.
Other security measures
included were input
validation, CORS, and
password hashing (bcrypt).

Endpoints were tested in
Postman for accuracy
before moving on to the
client-side code.

A previous project dealt with the creation of the database, enacting
CRUD on API endpoints, authentication and JWT authorization.

6

STAGE 1 : REACT-APP

I used both
functional and class
components, based
on their usage and

relation to their
parent. This gave

me more experience
on how to

troubleshoot each
type.

DECISIONS

Learning and
utilizing React for
the first time was

an intense
learning curve, so I

spent extra time
building my
foundational

knowledge before
diving in.

CHALLENGES

Improved skills:
HTML, JavaScript,

CSS..

New skills:
Building React app

framework from
scratch, without

use of
cra-template.

SUCCESSES

Working with a
framework like
React gave me

insight of what to
expect from

others, such as
Angular and Vue,

and what the
differences are
between each

one.

IMPORTANCE

7

Without styling, the render statements of
the React components give a very

telegraphic representation in the virtual
DOM.

IMPORTANCE

STAGE 2 : BOOTSTRAP STYLING

I was very pleased with the end result of
the styling, my experience with using

basic Bootstrap on previous work was a
great stepping stone to applying it to a

React app.

SUCCESSES

By using React Bootstrap, rather than
basic CSS/SCSS, the styling was often
“split” between a component’s .jsx file

and its .scss file, such as the snippets to
the side. Due to this, and the fact parent

components had control over their
children, sometimes it was difficult to
locate exactly where a styling feature

was coming from.

CHALLENGES

8

ProfileView.scss

ProfileView.jsx

STAGE 3 : REDUX

I had an easier
time with Redux
than I did initially
with React, and
was especially
grateful to the
Redux Chrome

Extension tools, as
I most of my

troubleshooting
through it.

SUCCESSES

Implementing
Redux at this

stage was
valuable as it

allows scaling up
to be easier the
app grows and

more components
are made.

IMPORTANCE

9

STAGE 4 : DEPLOYMENT

New skills: Netlify hosting; experiencing alternative
hosting methods is valuable to understand what

platform is best for certain projects.

So far Netlify has been my favorite hosting site, simply
because of its link to Github, so that when a repo is
updated, a new version is deployed automatically.

SUCCESSES

The SPA format of React caused some confusion in
Netlify, and my first deployed version couldn’t find the

route to the endpoint ‘/register ’, though had no problem
with any others.

The 404 error was fixed by adding a ‘_redirects’ file into
my dist folder to preserve the virtual DOM.

CHALLENGES

10

LOOKING BACK
The most time consuming

errors I encountered were not
from functions, where I

assumed I was going awry.
They were either small typos or
outstanding connection issues

in my server-side code.

11

If I could do anything different
in this project, I would have

created more child components
under ProfileView.jsx to

separate out major CRUD
actions, like updating user

information, rather than keeping
it all in one file.

This project was my most
difficult to date, and as I

continue to improve myFlix, I
will work on building a more

robust collection of movies and
developing new visuals to allow
for a more seamless layout of

movie cards.

Despite being red, Mars
is a cold place, not hot.

It’s full of iron oxide dust

STEP 1

Lesson learned:
Looking at both smallest
and biggest picture is as
important as the individual
components.

Figuring out how my components, their
props and states interacted with each other

sometimes felt like this….

So I kept copious in-code notes and
made big changes within new branches
on Git and merged into the main branch

when finished. These techniques
enabled me to keep the flow of the app

straight.

Thank you!

For any questions, please reach out to me at:

kelseyflynnn@gmail.com
+1.403.808.2573

REACT

REACT

https://www.linkedin.com/in/kelsey-flynn-429464a6/

https://github.com/KSFlynn007/

To visit the live application, click this link:

https://flynn-myflix.netlify.app/

Or check out out what else I’m working on at:

https://flynn-myflix.netlify.app/

CREDITS

● Presentation template by Slidesgo
● Icons by Flaticon
● Infographics by Freepik
● Images created by Freepik
● Author introduction slide photo created by Freepik
● Text & Image slide photo created by Freepik

http://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/

