
SQL Case
Study:
Simple

Instagram
Clone
Kelsey Flynn

Create tables in
GoormIDE Fill table data SQL QueriesPlanning Schema

01 02 03 04

Project Stages

users

photos

comments

follows

The “leading” table, contains no foreign keys.

Planning Schema

likes

Users comment on photos, foreign keys for users & photos.

Users post photos, will need to reference users.

Users like photos, same foreign keys as comments.

Users can follow others and be followed, references users 2x.

tagsPhotos can be associated with tags, but no foreign keys.

photo_tagsTo see which photos have a certain tag, will need to reference
“parent” tables for foreign keys.

Following a logical order:

Planning Schema

Creating Tables in GoormIDE

Table Data

● 100 users
● 7488 comments
● 7623 follows
● 8782 likes

Data provided by Colt Steele,
Developer & Bootcamp
Instructor

● 257 photos
● 21 tags
● 501 photo_tags

Planning SQL Queries:
What do we want to know?

We want to find the
best & most loyal
customers. Would

give insights to
send a thank you

post or a
sponsorship!

We want to find the
“dead” accounts,
to verify a fake

account or to send
another

welcome/how to
email to users!

We want to find the
best time to create

marketing plans
for certain times of
the week/year and

tag popularity!

SQL Queries Pseudo Code & Overview

Find the 5 oldest users

Find the most popular
registration date

Find the most popular
hashtags

Identify most popular photo
(and user who created it)

Find inactive users

Find those bots!

Queries

SELECT

DAYNAME(created_at) AS day,

COUNT(*) AS total

FROM users

GROUP BY day

ORDER BY total DESC

LIMIT 2;

SELECT *

FROM users

ORDER BY created_at

lIMIT 5;

SELECT

Tags.tag_name,

COUNT(*) AS total

FROM photo_tags

JOIN tags

ON photo_tags.tag_id = tags.id

GROUP BY tags.id

ORDER BY total DESC

LIMIT 5;

SELECT username, photos.id, photos.image_url, COUNT(*) as total

FROM photos

INNER JOIN likes

ON likes.photo_id = photos.id

INNER JOIN users ON photos.user_id = users.id

GROUP BY photos.id

ORDER BY total DESC

LIMIT 1;

SELECT username

FROM users

LEFT JOIN photos

ON users.id = photos.user_id

WHERE photos.id IS NULL;

SELECT

Username,

COUNT(*) AS num_likes

FROM users

INNER JOIN likes

ON users.id = likes.user_id

GROUP BY likes.user_id

HAVING num_likes =

(SELECT

Count(*)

FROM photos);

Takeaways

Best practices for loading and working with
large amounts of data.

INNER vs. LEFT vs. RIGHT JOIN experience.

Thank you to slidego.com for the resources!

1

2

3

1

How to “slim down” a large concept like
Instagram into smaller pieces for a mock
structure.

